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The Overconfidence Problem

or
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Class imbalance: Conversion events
are extremely rare (0.1% – 5%).
Mislabelling: Users routinely jump
between numerous digital devices.
Distribution shift: Frequent changes
in campaign designs.

Poor generalizability:
No feasible solution with state-of-the-art
(i.e., neural language model-based)
attribution architectures.
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Our Contribution(s)

A hierarchical (i.e., transformer-based) machine learning architecture optimized
for multi-touch conversion attribution:

▶ Easy-to-interpret: A simplistic feed-forward attention mechanism
attributes the conversion credits (attribution scores) directly on specific
touchpoints.

▶ On-the-go-results: Enables ensemble techniques (e.g., Bagging, Breiman
1996; Bayesian averaging, Raftery et al. 1997) for improved and robust
classification of previously unseen data.
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Architecture

Feed-forward attention (Raffel & Ellis, 2015):
For embedding vector zi (i.e., touchpoint in postion i of a user sequence of
length n) of dimension d.

ri = a(zi), (attention score)
vi = softmax(r), (attention weight)
c = ∑

i vizi, (context vector)

Feed-forward attention for touchpoint attribution.
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Architecture

Positional Encodings (Vaswani et al. 2017):

z′
i = γzi + pi.

where

pi =
{

sin (ωk, i) , if i = 2k,
cos (ωk, i) , if i = 2k + 1,

with ωk = 1/1000(2k/d) for
k = 1, . . . d/2.

Feed-forward attention for touchpoint attribution.
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Architecture

The Stacked Web of Attentional Neurons:

c = ∑
l vl

∑
i vliz

′
i,

with attention weight vli for
touchpoint i from context vector l,
and attention weight vl for context
vector l from the final representation.

P (Y = 1|c) > 0.5 Context vector stacking for touchpoint
interactions. Note: an attentional neuron refers
to a general context vector.
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Uncertainty Quantification

Alleatoric (data-based) uncertainty:
N -individual SWAN networks trained on
N -undersampled datasets. The final
classification is the aggregate of the
sub-SWANs.
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Uncertainty Quantification (2)

Alleatoric (data-based) uncertainty:
N -individual SWAN networks trained on
N -undersampled datasets. The final
classification is the aggregate of the
sub-SWANs.

Epistemic (model-based) uncertainty:
Randomly drop a set of nodes for every
forward pass of the data during testing
(Gal & Ghahramani, 2016).
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Experiments
Data (train = 80%, test = 20%)
▶ Real: 6.1 million user sequences with 59,098 unique touchpoints;

4.7% conversion ratio (Diemert et al., 2017).

▶ Simulated: 10 million user sequences with 20 unique touchpoints;
2.0% conversion ratio.

Benchmarks
▶ SWAN: 1 layer of four attentional neurons;

trained for 7 epochs (split = 50–50, batch size = 1024, d = 256).

▶ Ensemble-SWAN: 1,000 forward passes and 25% dropout percentage;
trained for 80 epochs (split = 50–50, batch size = 1024, d = 256).

▶ ARNN: attention-augmented RNN encoder part (Ren et al. 2018);
trained for 7 epochs (split = 50–50, batch size = 1024, d = 256).
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Conversion Prediction Accuracy

SWAN Ensemble
SWAN ARNN

Accuracy 79.7% 80.5% 79.7%
Precision 74.7% 94.7% 74.5%
F1-score 72.1% 85.5% 72.1%
AUC-ROC 67.8% 82.7% 70.0%

Out-of-sample conversion prediction
performance. Ensemble results obtained for
N = 200 sub-SWANs.
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Conversion Prediction Accuracy (2)

Out-of-sample F1-Score (left) and area under the ROC curve (right) for the
converged SWAN (red dotted line) and the Ensemble-SWAN.
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Alleatoric Uncertainty

Out-of-sample average
F1-score, incl. 90% (upper)
& 10% (lower) quantiles for
N = 200 sub-SWANs before
aggregation.
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Alleatoric Uncertainty (2)

(Non-aggregated) posterior predictive distribution of the N = 200 sub-SWANs
for three different sequences. The green, vertical, dashed line indicates the
chosen conversion probability threshold.
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Epistemic Uncertainty

Posterior predictive distribution for 1,000 forward passes for three different
sequences. The green, vertical, dashed line indicates the chosen conversion
probability threshold.

18 / 25



Attribution Scores
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Attribution Accuracy

MSE 1 × 106

SWAN 2.29
ARNN 6.63
Shapley Value 9.37
Last-touch 9.05
Linear-touch 9.67

Simulated Mean Squared Error.
Smaller values indicate better
model fit.

20 / 25



Summary

The (Ensemble)-SWAN is an (1) easy to interpret, (2) computational ef-
ficient and (3) robust transformer architecture specialised for conversion
attribution problems.

Outlook
▶ Adaption to a more “Bayesian” approach (evidential regression, Amini et al.

2020).

▶ Uncertainty propagation to touchpoint- and/or channel-specific
attributions.

▶ Field test on more “accessible” data with different additional features
(e.g., time between clicks, time spent on a wepage, etc.).
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Many thanks for your attention!
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Simulated Mean Squarred Error

Mean (squarred) error in reverse-engineering the simulated conversion attribution
process:

MSE = 1
n

∑
i

(
Ci − Ĉi

)
,

with Ci the total number of conversions attributed to the i-th touchpoint and Ĉi

its estimate.
The true attribution of the i-th touchpoint is the contribuion of its main effect
plus half of the effect of its pair-wise interactions:

Attri =
ei + 1

2
∑

j ̸=i ei,j

S
.
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