The pcm2sampler - Part II

How to use the pcm2sampler

Kathrin Gruber
Institute for Service Marketing and Tourism, WU Wien
Norman Verhelst

Eurometrics, Tiel, The Netherlands

Overview

- The pcm2sampler
- Exact tests
- How to use the pcm2sampler

General structure

- workhorse is a FORTRAN 95 subroutine samplerPCM2
- main programm is written in R (wrapper) and is called from the function pcm2sampler
- Input: a matrix consisting of binary and\or ternary items (entries), several parameters for controlling the algorithm
- Output: list of generated matrices (and control parameters)
- Further operations: calculate statistics (exact tests), replicate the sampling process, saving the results, ...

Input

```
pcm2sampler(inpmat, controls = ctrl())
```

- inpmat: the input matrix (binary and\or ternary entries), with $\mathrm{n}=$ number of rows (subjects, maximum number 1023) and $k=$ number of columns (items, maximum number 63)
- controls: parameters for controlling the algorithm specified by the function ctrl()

```
ctrl(burn_in, n_eff, step, t_fixed, seed)
```


Tuning parameters (1)

Approximation of the stationary distribution

- burn in: the number of burn-in blocks (≥ 0) to start the process somewhere near the stationary distribution

Control over serial dependency

- step: stepsize (>0) to lower the serial dependency between the outcomes (add.: to influence the extend of the steps of the process within the sample space) controls the number of void matrices in the burn in process and when effective matrices are generated

$$
\text { Burn-in period }=\text { burn_in } \times \text { step }
$$

Tuning parameters (2)

- n eff: number of sampled matrices after the burn-in period (the sample size)
maximum number of effective matrices is 10,000
E.g. step $=5$, burn_in $=200,200 \times 5=1000$ matrices are generated before the first effective matrix

Total number of generated matrices $=$ step $\times\left(\right.$ burn_in $+n_{-}$eff $)$

No. of void matrices between two effective matrices $=$ step - 1

Tuning parameters (3)

- seed: seed of the random number generator = 0 : seed is generated by the subroutine and the value is stored (on output) in the parameter seed
$\neq 0$: seed is used as the seed in the random number generator and on output it has the same value as on input
- t fixed: logical, must be false upon calling (not implemented yet)

Output

After defining appropriate control parameters using ctrl() the sampling function pcm2sampler() is called to obtain an object which contains the generated random matrices in encoded form.

- outvec: contains n_eff + 1 encoded matrices (sampled plus the original input matrix in position 1)
Matrices are stored column-wise, with each column starting in a new element of outvec
- n_tot: number of encoded matrices

Additional methods

- summary(): generic function, method to control and sample objects
- extrmat(): function for extracting a matrix
- extrobj(): function for extracting encoded sample matrices

Example (1)

$>\operatorname{ctr}<-\operatorname{ctrl}()$
$>$ summary (ctr)

Current sampler control specifications in ctr:
burn_in = 100
n_eff = 100
step $=16$
seed $=0$
t_fixed = FALSE

Example (2)

$>\operatorname{data}(x m p l)$
> ctr<-ctrl (burn_in=10, n_eff=5, step=10, seed=0, t_fixed=FALSE)
> res<-pcm2sampler (xmpl,ctr)
$>$ summary (res)

Status of object res after call to pcm2ampler:

$$
\mathrm{n}=300
$$

$\mathrm{k}=30$
burn_in = 10
n_eff = 5
step $=10$
seed $=115940628$
t_fixed = FALSE
n_tot $=6$
outvec contains 1800 elements

Short introduction to exact tests (1)

Statistical tests and confidence intervals are based on exact probability statements that are valid for any sample size.

Motivation for exact tests:

- no parameter estimation needed
- do not base on asymptotic and approximative statistical methods
- also valid for small sample size

Short introduction to exact tests (2)

Construction principle in general:

- Rearrange the labels of the observed data points.
- Calculate all possible values of the test statistic (to derive the test statistic under H_{0} is valid)

Short introduction to exact tests (3)

More specific:

- Sample all possible matrices from $\Sigma_{r s}$ with identical margins r and s
- Calculate test statistic $T\left(A_{0}\right)$ for the observed data matrix A_{0}
- Calculate $T\left(A_{1}\right) \ldots T\left(A_{n}\right)$ for the simulated data matrices to derive the nonparametric distribution of T
- Evaluate exceedance probability of $T\left(A_{0}\right)$ by counting the number of $T\left(A_{j}\right) \geq T\left(A_{0}\right)$ for $(j=1, \ldots, n)$
- Reject H_{0} if

$$
\left(p=\frac{1}{n} \sum \mathbb{I}_{\left\{T\left(A_{j}\right) \geq T\left(A_{0}\right)\right\}}\right) \leq \alpha
$$

How to derive a test statistics using the pcm2sampler?

Define an appropriate R function that operates on each of the generated matrices by the use of the function rstats()

Example 1:

Calculates the R_{ϕ} statistic (the range of the inter-column correlations (ϕ-coefficients) for a binary matrix)
$>\operatorname{ctr}<-\mathrm{ctrl}\left(\right.$ burn_in $=10, \mathrm{n}_{\mathbf{\prime}}$ eff $=5$, step=10, seed = 123, t_fixed = FALSE)
$>$ mat <- matrix (sample(c(0,1), 50, replace $=$ TRUE), $n r=10$)
> rso <- pcm2sampler(mat, ctr)
> rso_st <- rstats(rso,phi.range)
> print(unlist(rso_st))

1	2	3	4	5	6
0.8908708	1.3403061	1.5345225	1.0517837	1.0629020	1.3093073

How to derive a test statistics using the pcm2sampler?

Generating 1000 random matrices

How to derive a test statistics using the pcm2sampler?

Example 2:

Calculate a statistic that is operating on the number of Latin Squares of type I or type II

$$
\log (1+\sharp L S 1) \text { or } \log (1+\sharp L S 2)
$$

matrix of size $\mathrm{n}=10, \mathrm{k}=100$
all 10 items are ternary!
> NumLS1
[1] 303
> NumLS2
[1] 290

How to derive a test statistics using the pcm2sampler? (4)

> LS1[1]
[1] 5.717028
> LS2[1]
[1] 5.673323
Y. Chen and D. Small. Exact Tests for the Rasch Model via Sequential Importance Sampling. Psychometrika, 70(1):11-30, 2005.
G.N. Masters. A Rasch Model for Partial Credit Scoring. Psychometrika, 47(2):149-174, 1982.
I. Ponocny. Nonparametric goodness-of fit tests for the Rasch model. Psychometrika, 66:437-460, 2001.
A. Rao, R. Jana and S. Bandyopadhyay. A Makrov Chain Monte Carlo Method for Generating Random (0,1)-Matrices with Given Marginals. Sankhya A, 58: 225-242, 1196.
T. Snijders. Enumeration and Simulation Methods for 0-1 Matrices with Given Marginals. Psychometrika, 56(3):397-417, 1991.
N.D. Verhelst. An efficient MCMC algorithm to sample binary matrices with fixed marginals. Psychometrika, 73:705-728, 2008.
N.D. Verhelst, R. Hatzinger and M. Mair. The Rasch Sampler. Journal of Statistical Software, 20(4), 2007

