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Example: Heterogeneity in Household Consumption Patterns
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{ymxn}flvzl and N = 29,988

Assume, our interest is in the “top”
(i.e., 10%) household segment.
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Example: Heterogeneity in Household Consumption Patterns

U.S. Consumer Expenditure Survey (2015)

(Conditional) mean regression
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Example: Heterogeneity in Household Consumption Patterns

U.S. Consumer Expenditure Survey (2015)

(Conditional) quantile regression
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Example: Heterogeneity in Household Consumption Patterns

thatis: v, = (Yn1, - Unk)

q(alz,) = pa) + Bz,

£ g where p,) is K X 1and B, is K X G
2
g g
5 z = Seemingly unrelated regression,
£ & simultaneous equations, VAR ...
-
o
o =2 oy .
R — w0 The conditional (Koenker-Bassett)

2 @ . .
i wn o quantile concept is not easy to extend!
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This Talk

» The quantile is defined as a property of an (estimated) conditional
multivariate density.

» This so-called super-level set enables a clear probabilistic interpretation and
enjoys favorable quantile properties.

» Linear and non-linear multivariate as well as univariate regression quantiles
are obtained in a comprehensive (fully) Bayesian framework.
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Multivariate Quantiles

Attempt 1: Conditional

q(@) =[Gy (Y1) -+ + > Qi (Y1)

» Input space augmentation.

» Assumes all “regressors” are fixed!
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Multivariate Quantiles

Areas within the gray lines (contours) give
the 80%-directional quantile (20 directions).

Attempt 2: Directional
» Convex intersection of a-quantile
halfspaces for different (Koenker-Bassett)
regression hyperplanes
(Hallin, Paindaveine & Siman, 2010).

» The (directional) quantile contours are
not guaranteed to cover a.
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Multivariate Quantiles

Areas within the black lines (countours) give
the 80%-elliptical quantile.

Attempt 3: Direct 3L
2
» Find an ellipsoid around a (determined) 1
center with a-probability mass = _2
(e.g., Hallin & Siman, 2016). -

» The quantile regions can cover large
parts with little to no probability mass.
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Multivariate Quantiles

Level sets of a bivariate bimodal distribution
for three different values of t.

00 00 o ¢

LA R J

Level set

L(fit)={y, eR": f(y,) =t}

= Cross-section of f(-) at a given
(constant) value t (Osher & Sethian, 1988).
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Multivariate Quantiles

Level sets of a bivariate bimodal distribution
for three different values of t.

00 00 o ¢

LA R J

Super-level set

L(fit) = {y, e R : f(y,) >t}

for threshold ¢ > 0, gives the highest density
region for f(-) (see, e.g., Hartigan, 1987).
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Multivariate Quantiles

Areas within the lines (quantile contours)
correspond to 80% probability mass.

Super-level set 3r

L(fit) = {y, €R": f(y,) > ] S

|
-
T T T T T

for threshold ¢ > 0, gives the highest density _3
region for f(-) (see, e.g., Hartigan, 1987).

Super-level set quantile

q(o) = L(f313),
ta =sup{Pr(y, € L(f;1)) = o}
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Multivariate Quantiles

Areas within the lines (quantile contours)
correspond to 80% probability mass.

» Supports a clear probabilistic
interpretation (in terms of «). < oof

» (Flexible) quantile regions cover areas -2
with high probability mass.

» Extensions to more than two outputs
are straightforward.
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Super-Level Set Quantiles vs. HPD Sets

Highest posterior density set

» Operationalizes uncertainty of a model parameter for a (typically) univariate
and unimodal posterior distribution (i.e., an interval, Box & Tiao, 1965).

Super-level set

» Quantifies uncertainty in a (set of) response variable(s), conditional on
other response variables, for arbitrarily shaped joint posterior distributions
(i.e., an interval or a set of intervals).
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Let's go (fully) Bayesian

(Overfitted) Finite Gaussian Mixture Model:

(yal,) =

where gm(wn = Hp + Bmwrw

M:

II{m (gm ), Em),

3

Ko} ~D(pr, - .pur).
Pm ~ g(@b 1/(@2M)>-

with M comparatively large (Nobile & Fearnside, 2007; Rousseau & Mengersen,
2011) and a on ¢(g,,(x,),2,,) (Malsiner-Walli, Frihwirth-Schnatter
& Griin, 2016).
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Implementation

Klc

208 (yC7w> - gm,lC( ) + ZImICCZ)mCC(yC gm,C<w))7

Klc _ 1
Em - Em,ICJC - Em,IC,CEm,C,CEm,C,IC ’

ﬁm¢<gm,c(w)a 2m,c,c>
2%1 ”l?b(Ql,c(m)a El,ac) ’

Wgz(ya ZIZ) =

. serve as inputs to the to compute g(«).
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Heterogeneity in Household Consumption Patterns (cont.)

real expenditures on housing
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Hyperparameters
» M =5
» a, = 10, ay = 40 (Dirichlet prior)
» b =.5, by =.5 (Gamma prior)
MCMC samples

» Effective: 200,000 / 40
(Burn-in: 400,000)
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Heterogeneity in Household Consumption Patterns (cont.)

Bivariate quantiles for food and housing conditional on four
different income levels. Blue lines corr. to a € {.2, 4, .6, .8}.
Red lines corr. to an income increase of $6,000.
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» .2 expenditure quantile does
not react considerably.

» .8 expenditure (.2 income)

quantile substantially
increases spending.

» No clear substituation

patterns between food and
housing.
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Heterogeneity in Household Consumption Patterns (cont.)

Quantile-varying marginal effects conditional on income.
Shaded areas give the 90% C.I. for four income a-levels.
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» Low-income quantile
households dedicate most of
the additional income to
food and shelter.

» Highest-income quantile

households hardly increase
spendings at all.
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Conclusion

Super-level sets provide a coherent framework for multivariate and univariate
conditional as well as marginal quantiles:

» (1) no quantile crossing, (2) flexible quantile contours with exact
probability coverage, (3) easy to extend quantile concept.

The overfitted GMM allows for straightforward incorporation of prior information
regarding shapes and centers:

» enables a data driven bandwith parameter selection without unpleasant
computational features (slow convergence, long runtimes; Polonik, 1997).

» makes no particular residual distribution assumption (see, e.g., Sriram,
Ramamoorthi & Ghosh (2013) on the invalidity of the AL-likelihood).
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Prior Distributions

Hm'f)Ov ‘70 ~ N('EO’ ‘70)7
Vo ~ N(’U V)
v = median(y,,),V ' =
‘70 = dlag(R%Ah s aR%(')\K)7
A~ g(bla 1/bz)~

with response variable-specific value ranges { Ry} and local shrinkage factors {\;} (b;,by > 0).
(see, Brown & Griffin, 2010)
vec(Bm) ~ ./\/(C()7 Co)

Em NIW(SO,SO)
where So =TI and s > 2+ K.
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Sampling Algorithm

» Simulate mixture parameters conditional on z,, (n=1,...,N, m=1,...,M):
» Sample {k,,} from D(p1,...,pnm) where p,, = pr + Nppy Ny = #{n : 2z, = m}.
» Sample {u,,} from N (D,,, V).
» Sample {B,,} from N (¢, Cp).
» Sample {X,,} from ZW(Sm, Sm)-

» Sample z, to classify observations conditional on mixture parameters (n =1,..., N):

> T = Prlz, = mly,,, &, 1, B, ] X £md (Y gm(@n), S -
» Sample {z,} from M(my,..., 7).
» Sample hyperparameters:
» Sample {p,,} simulatneously via a random walk MH-step with proposal density
log(pm) NN(IOg(Pm)7 ;Z)m) from p(pm|k) X p(K|pm)P(Pm)
» Sample {\;} from GZG(b, — M/2,2by, 8;) where 6, = SN (pi.1 — To.x)%/ R2.

m=1

» Sample vy from N(Zm LB /M,Vo/M) with Vo = diag(RIA1, ..., REA ).
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Super-level Set Algorithm

Input : chosen coverage probability o
conditional distribution function Fy|y,—y,(¥)
grid boundary probability e
dimension-specific grid point number 7gq
Output: actual coverage probability p
. e A A . K|
numerical quantile Q = Qy |y o=y, (@) of size n 4

1 for k € K do
2 grid, = equally spaced ngrq vector with values
from Fy ¥e=ye (€) to FYk\Yc —ve (1—e);

()

Qy«lye—y, (@) = |K|-dimensional array of zeros

'S

P = empty |K|-dimensional array to hold probabilities per hypercube
for (iy € 2 : Ngra), (G2 € 2 ¢ Ngria), ..., (i) € 2 : Ngrg) do

L P“ iyt = =Pr\r € [gridlc,ik—lvgridk,ik] Vk e K|Yc =y

o o

Tp=

8 h ep<ado

9 = set of indices for which P equals max{P}
0 | p=p+Yih
11 for i € Z do

12 Qz =«
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Quantile-Specific Measures

The local marginal effect in the a-level quantile of Y}, given Y = y,. for a
change from x to ¢ + A is:

5£|C<a|yc7 w) = QYk\Yc:yc (Oé|:B + Ag) - QYk|YC:yC (Oélw),

where A, is a vector with a small value §, at position g and zeros elsewhere (see
Doksum, 1974).
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