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Example: Heterogeneity in Household Consumption Patterns

{yn, xn}Nn=1 and N = 29, 988

yn = µ+ x′nβ + un

Assume, our interest is in the “top”
(i.e., 10%) household segment.
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Example: Heterogeneity in Household Consumption Patterns

(Conditional) mean regression
m(xn) = µ+ x′nβ
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Example: Heterogeneity in Household Consumption Patterns

(Conditional) quantile regression
q(.1|xn) = µ(.1) + x′nβ(.1)
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Example: Heterogeneity in Household Consumption Patterns

that is: yn = (yn1, . . . , ynK)′

q(α|xn) = µ(α) +B(α)xn

where µ(α) is K × 1 and B(α) is K ×G

⇒ Seemingly unrelated regression,
simultaneous equations, VAR ...

The conditional (Koenker-Bassett)
quantile concept is not easy to extend!
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This Talk

I The quantile is defined as a property of an (estimated) conditional
multivariate density.

I This so-called super-level set enables a clear probabilistic interpretation and
enjoys favorable quantile properties.

I Linear and non-linear multivariate as well as univariate regression quantiles
are obtained in a comprehensive (fully) Bayesian framework.
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Multivariate Quantiles

Attempt 1: Conditional

q(α) = [qyn1(α|yn(−1)), . . . , qynK
(α|yn(−K))]′

I Input space augmentation.

I Assumes all “regressors” are fixed!
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Multivariate Quantiles

Attempt 2: Directional

I Convex intersection of α-quantile
halfspaces for different (Koenker-Bassett)
regression hyperplanes
(Hallin, Paindaveine & Siman, 2010).

I The (directional) quantile contours are
not guaranteed to cover α.

Areas within the gray lines (contours) give
the 80%-directional quantile (20 directions).
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Multivariate Quantiles

Attempt 3: Direct

I Find an ellipsoid around a (determined)
center with α-probability mass
(e.g., Hallin & Siman, 2016).

I The quantile regions can cover large
parts with little to no probability mass.

Areas within the black lines (countours) give
the 80%-elliptical quantile.
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Multivariate Quantiles

Level set

L(f ; t) =
{
yn ∈ RK : f(yn) = t

}
⇒ Cross-section of f(·) at a given
(constant) value t (Osher & Sethian, 1988).

Level sets of a bivariate bimodal distribution
for three different values of t.
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Multivariate Quantiles

Super-level set

L(f ; t) =
{
yn ∈ RK : f(yn) ≥ t

}
for threshold t > 0, gives the highest density
region for f(·) (see, e.g., Hartigan, 1987).

Level sets of a bivariate bimodal distribution
for three different values of t.
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Multivariate Quantiles

Super-level set

L(f ; t) =
{
yn ∈ RK : f(yn) ≥ t

}
for threshold t > 0, gives the highest density
region for f(·) (see, e.g., Hartigan, 1987).

Super-level set quantile

q(α) = L(f ; t?α),
t?α = sup {Pr(yn ∈ L(f ; t)) ≥ α}

Areas within the lines (quantile contours)
correspond to 80% probability mass.
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Multivariate Quantiles

I Supports a clear probabilistic
interpretation (in terms of α).

I (Flexible) quantile regions cover areas
with high probability mass.

I Extensions to more than two outputs
are straightforward.

Areas within the lines (quantile contours)
correspond to 80% probability mass.
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Super-Level Set Quantiles vs. HPD Sets

Highest posterior density set

I Operationalizes uncertainty of a model parameter for a (typically) univariate
and unimodal posterior distribution (i.e., an interval, Box & Tiao, 1965).

Super-level set

I Quantifies uncertainty in a (set of) response variable(s), conditional on
other response variables, for arbitrarily shaped joint posterior distributions
(i.e., an interval or a set of intervals).
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Let’s go (fully) Bayesian

(Overfitted) Finite Gaussian Mixture Model:

f
(
yn|xn

)
=

M∑
m=1

κmφ
(
gm(xn),Σm

)
,

where gm(xn) = µm +Bmxn,

κ|{ρm} ∼ D
(
ρ1, · · · , ρM

)
,

ρm ∼ G
(
a1, 1/(a2M)

)
.

with M comparatively large (Nobile & Fearnside, 2007; Rousseau & Mengersen,
2011) and a Shrinkage Prior on φ(gm(xn),Σm) (Malsiner-Walli, Frühwirth-Schnatter
& Grün, 2016).
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Implementation

µK|Cm (yC,x) = gm,K(x) + Σm,K,CΣ−1
m,C,C

(
yC − gm,C(x)

)
,

ΣK|Cm = Σm,K,K −Σm,K,CΣ−1
m,C,CΣm,C,K ,

ωCm(yC,x) =
κmφ

(
gm,C(x),Σm,C,C

)
∑M
l=1 κlφ

(
gl,C(x),Σl,C,C

) ,
... serve as inputs to the Level-set algorithm to compute q̃(α).
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Heterogeneity in Household Consumption Patterns (cont.)

Hyperparameters

I M = 5

I a1 = 10, a2 = 40 (Dirichlet prior)

I b1 = .5, b2 = .5 (Gamma prior)

MCMC samples

I Effective: 200,000 / 40
(Burn-in: 400,000)
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Heterogeneity in Household Consumption Patterns (cont.)

Bivariate quantiles for food and housing conditional on four
different income levels. Blue lines corr. to α ∈ {.2, .4, .6, .8}.
Red lines corr. to an income increase of $6,000. QTE

I .2 expenditure quantile does
not react considerably.

I .8 expenditure (.2 income)
quantile substantially
increases spending.

I No clear substituation
patterns between food and
housing.
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Heterogeneity in Household Consumption Patterns (cont.)

Quantile-varying marginal effects conditional on income.
Shaded areas give the 90% C.I. for four income α-levels.
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I Low-income quantile
households dedicate most of
the additional income to
food and shelter.

I Highest-income quantile
households hardly increase
spendings at all.
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Conclusion

Super-level sets provide a coherent framework for multivariate and univariate
conditional as well as marginal quantiles:

I (1) no quantile crossing, (2) flexible quantile contours with exact
probability coverage, (3) easy to extend quantile concept.

The overfitted GMM allows for straightforward incorporation of prior information
regarding shapes and centers:

I enables a data driven bandwith parameter selection without unpleasant
computational features (slow convergence, long runtimes; Polonik, 1997).

I makes no particular residual distribution assumption (see, e.g., Sriram,
Ramamoorthi & Ghosh (2013) on the invalidity of the AL-likelihood).
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Prior Distributions

µm|v0,V 0 ∼ N
(
v0,V 0

)
,

v0 ∼ N
(
v ,V

)
,

v = median(yn),V −1 = 0

V 0 = diag(R2
1λ1, . . . , R

2
KλK),

λk ∼ G
(
b1, 1/b2

)
.

with response variable-specific value ranges {Rk} and local shrinkage factors {λk} (b1, b2 > 0).
(see, Brown & Griffin, 2010)

vec(Bm) ∼ N
(
c0,C0

)
Σm ∼ IW

(
S0, s0

)
where S0 = I and s0 > 2 +K.
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Sampling Algorithm

I Simulate mixture parameters conditional on zn (n = 1, . . . , N, m = 1, . . . ,M):
I Sample {κm} from D(ρ1, . . . , ρM ) where ρm = ρm +Nm, Nm = #{n : zn = m}.
I Sample {µm} from N (vm,V m).
I Sample {Bm} from N (cm,Cm).
I Sample {Σm} from IW(Sm, sm).

I Sample zn to classify observations conditional on mixture parameters (n = 1, . . . , N):
I πm ≡ Pr[zn = m|ym,κ,µ,B,Σ] ∝ κmφ

(
yn; gm(xn),Σm

)
.

I Sample {zn} from M(π1, . . . , πM ).

I Sample hyperparameters:
I Sample {ρm} simulatneously via a random walk MH-step with proposal density

log(ρm) ∼ N (log(ρm), s2
ρm

) from p(ρm|κ) ∝ p(κ|ρm)p(ρm)
I Sample {λk} from GIG(b1 −M/2, 2b2, δk) where δk =

∑M
m=1(µm,k − v0,k)2/R2

k.
I Sample v0 from N

(∑M
m=1 µk/M,V 0/M

)
with V 0 = diag(R2

1λ1, . . . , R
2
KλK).

Back
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Super-level Set Algorithm
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Quantile-Specific Measures

The local marginal effect in the α-level quantile of Yk given Y C = yC for a
change from x to x+ ∆g is:

βgk|C(α|yC,x) = QYk|Y C=yC

(
α|x+ ∆g

)
−QYk|Y C=yC

(
α|x

)
,

where ∆g is a vector with a small value δg at position g and zeros elsewhere (see
Doksum, 1974). Back
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