
Graphical Markov Models as an alternative to SEM

Abstract

We propose the use of directed acyclic graphs (a subclass of graphical Markov
Models) as an alternative to structural equation models. The method imposes less
rigorous assumptions on the data and the underlying theoretical framework The
relationships between the latent and structural variables can be incorporated in a
multivariate model, by specifying only an initial ordering. Thus, they appear to
be particularly suitable for situations, when the theoretical foundations are weak
or ambiguous. We demonstrate the potential capabilities of the methodology using
data collected from an exploratory study on the motivational drivers of voluntary
contributors to the R-project.

Keywords: Structural equation models, graphical models, directed acyclic graphs, marketing
modeling

Track: Modeling and Forecasting

1



1 Introduction

In the past decades, the application of structural equation models (SEMs) has been steadily
growing in marketing and the behavioral sciences (Baumgartner & Homburg, 1996,
Steenkamp & Baumgartner, 2000). SEMs are confirmatory modeling techniques for simulta-
neously assessing and testing hypothesized interrelationships among latent variables and their
corresponding measurement models. In the SEM-framework, theory serves as a conceptual frame-
work for developing a model which implies a covariance structure and is able to detect latent
factors in theoretical constructs (Bollen, 1989).

However, SEMs require all posited relationships (even the structure of observed variables)
to be well specified before the model can be estimated. They are typically also very sensitive
to violations of the underlying assumptions (e.g., if there are nonlinear relationships) and can
produce misleading results even if the assumed interrelationship structure is only partially false.
Thus, the use of SEMs is limited to applications with a very strong and substantial theoretical
foundation. Another issue with SEMs is that in empirical research practice, an initial model
is often estimated based on theory, but later on modified in order to improve model fit with
the observed data. In fact, most of the commonly used software packages offer some kind of
"modification indices" to support the model user in this respect (for critics of this practice see,
e.g., MacCallum, Roznowski & Necowitz 1992; Spirtes, Glymour & Scheines, 2000).

This paper introduces an approach, which imposes less rigorous assumptions on both the data
and the underlying theoretical framework. The proposed modeling technique is based on directed
acyclic graphs (a special case of graphical Markov models). The approach is combined with the
features of item response theory (IRT) for measuring latent variables. Similar to confirmatory
factor analysis, the IRT framework allows to interpret the responses to the measurement items
as observable manifestations of hypothesized constructs. To avoid measurement error the model
variables are error corrected by the use of simulation and extrapolation (SIMEX). The combina-
tion of these modeling components can be used to explain interdependencies when the theoretical
foundations of the underlying study area are weak or ambiguous.

The next section introduces the building blocks of the proposed methodology. To empirically
illustrate the capabilities of the modeling technique, we present results from a study, which aims
to detect motivational patterns for software developers to contribute to the Open Source Software
(OSS) project R.

2 Graphical modeling

Graphical Markov models are multivariate statistical models where a graph describes indepen-
dence statements in the joint distribution. In the setting of graphical Markov Models p nodes
V = {1, . . . , p} in a graph denote random variables Y1, . . . , Yp and there is at most one edge i, j

between each pair of nodes i and j. The edges represent conditional association parameters in
the distribution of YV . The variables in this so-called independence graph may be categorical
and modeled by discrete random variables, or numerical and modeled by continuous variables.

Research hypotheses (or any other substantive knowledge) are used to specify an ordered
sequence of the variables starting with purely explanatory (independent) variables and ending
with one ore more responses. The variables are arranged in a joint response chain graph G into
subsets (typically displayed by boxes) from left to the right, starting with responses of primary
interest.

fV = fVp|Vp−1...V1
· fVp−1|Vp−2...V1

· . . . · fV2|V1
· fV1

(1)

Equation 1 is an ordered partition of the set V of all p nodes into subsets as (a, b, c, ...) to
a dependence chain. If it is possible to order the variables in a way that some are responses
to others in a recursive response structure this type of graphical models is called a directed
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acycilc graph GVdag (Cox & Wermuth, 1996; Wermuth & Cox, 2004; Pearl, 2000). The variables

are neither explanatory nor responses for itself and thus all edges in the independence graph GVdag
are directed and there is no direction-preserving path from a node back to itself. This graph
defines Yp to be independent of remaining ancestors. The density f of the distribution P admits
a recursive factorization according to G such that

f(y) =
∏

p∈V

f(yp|ypr(p) (2)

where y is a random vector. In this way the joint distributions are decomposed recursively into
conditional joint distributions and simplified by conditional independencies. Additionally this
greatly reduces the amount of computation when calculating the density f(y) of a GVdag. The
next subsections explains how the relationships of the graphical model can be estimated.

2.1 Structural part

As mentioned, the variables are assigned into disjoint blocks based on substantive knowledge
and ordered such that all variables in a later chain component are considered conditional on
the prior components. Now an appropriate model selection technique is employed to identify a
subset J ⊆ K,K = {1, . . . k} such that all coefficients βj , j ∈ J are different from zero and the
remaining βi, i ∈ K \ J are equal to zero.

In this paper we use a heuristic strategy introduced by Cox & Wermuth (1996), which is based
on the calculation of univariate regression models as a sequence of conditional distributions.
This strategy can roughly be divided into two steps where at each step a variable Yp ∈ V is
regressed on all other variables belonging to a lower-level chain component. In the first step of
the algorithm there is a screening for two-way interactions (in all possible trivariate models) and
nonlinearities (quadratic terms) are applied to all univariate generalized linear regressions. Only
significant effects beyond a specified threshold (e.g., p < 0.01) are included in the respective
models. In a second step, a backward selection procedure for regressions with main effects,
nonlinear terms and/or interaction terms (different selection criterions are possible, e.g., AIC,
BIC, deviance, Wald-test) is used to reduce the set of variables. Finally, there is another check for
interactions and nonlinearities based on the reduced model, i.e., including all two-way interactions
and quadratic terms for those variables and effects that have been selected in the previous
step. Again backward selection leads to the final model. This procedure is performed for every
(potential) response variable to reduce complex structures into tractable subcomponents.

This type of graphical Markov models has been successfully applied in many domains
(Cox & Wermuth, 1996; Edwards, 1995; Lauritzen, 1996; Oliver & Simth, 1990; Sprites et al.,
1993), but it requires the accommodation of latent variables to make it fully usable as an alter-
native to SEM. This can be accomplished by integrating IRT and a method for bias correction
of the estimates to cover and supplement the features of confirmatory factor analysis within the
framework of SEM. Additionally, it is also possible to keep or drop relationships that should or
should not be included in the model in the estimation process of the chain graph.

2.2 Latent part

Similar to an SEM-setting the variables used in the graphical Markov model can be concep-
tualized as latent variables by the use of IRT (see, e.g. De Ayala, 2008, for an overview). Latent
variables are not directly observed and must be inferred from manifest responses. A person
parameter is estimated for each subject, which maps the subject on a latent dimension. These
parameters correspond to factor scores as known from factor analysis. The person parameters
as well as their standard errors are used as input for the graphical modeling procedure.

Because of the latent variable approach and our inability to directly observe the variables of
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interest, the regression framework we use could result in seriously biased parameter estimates.
To account for measurement error we use the SIMEX method (Cook & Stefanski, 1994), which
allows us to correct the effect estimates in the presence of additive measurement error. This
method is especially helpful for complex models with a simple measurement error structure.

The SIMEX-method uses the relationship between the size of the measurement error σ2
u and

the bias of the effect estimator when ignoring the measurement error, that defines the function

σ2
u −→ β⋆(σ2

u) := F(σ
2
u) (3)

where β⋆ is the limit to which the naive estimator converges as the sample size n→∞. Although
there is measurement error in the data, the SIMEX method approximates the function F(σ2

u) by
a parametric approach F(σ2,Γ).

The combination of all of these statistical methods for scaling and model building can provide
a useful and powerful alternative to SEM. It can be used to identify interdependency structures
among (ordered) subsets of variables even in the extreme case of absence of any plain underlying
theory. The next section illustrates this capacity in an empirical application.

3 Empirical application

Studying software developers’ motivations to contribute to OSS projects is not an easy and
straightforward task. There are many external factors and hybrid forms of motivation that
might potentially play a role and have to be taken into account when one wishes to explain
OSS contributions. Thus, previous empirical findings in this research area are rather limited and
partially ambiguous (Roberts et al., 2006). In this study, we demonstrate the modeling approach
presented above using data collected from the CRAN survey, which was conducted to examine
the motivation of voluntary contributors to the R project. The survey was conveyed on the
popular platforms ’CRAN’, ’R-Forge’, and ’Bioconductor’.

The directly observable responses (dependent variables) of primary interest are different forms
of individual participation in the project. In addition, a wide range of potential motivational
drivers (multi-item scales) was compiled based on an exhaustive literature review
(Morgeson & Humphrey, 2006; Schwartz, 1992; Reinholt, 2006). The final questionnaire con-
sisted of 120 items and also included some socio-demographic variables. The survey was con-
ducted in April/May 2010. 4,274 authors of R packages (OSS contributors) were contacted
via Email and asked to participate in the online survey. By the end of May 2010, 782 OSS
contributors completed the full questionnaire.

Our literature review on potentially relevant explanatory variables of OSS participation sug-
gests a first ordering of the studied variables as depicted in Tab. 1. There are three response vari-
ables of primary interest: The number of published packages (NPKGS), participation to mailing
lists (LISTS) and to meetings (MEET). Several variables serve as "intermediates", because they
can be considered as potentially explanatory for the higher-ordered variables (NPKGS, LISTS,
and MEET) and as a response to others lower in the ordered block structure. These intermedi-
ates are: Task characteristics (TC), knowledge characteristics (KC), social characteristics (SC),
extreme extrinsic motivation (EEM), well internalized extrinsic motivation (EMIM), extreme
intrinsic motivation (EIM), universalism (UNIV), power (POWER) and self direction (SELF).
The intermediates are all scaled by using a two-parametric logistic model (2PL; Birnbaum, 1968)
and define the latent motivational dimension. The set of purely explanatory variables, i.e., oc-
cupational status (O.STAT), field of education (EDUC), degree (DEG), job category (JOB) and
gender (GEND), is represented at the far right end of the chain. The effects on the response
variables are analyzed for all variables listed in the boxes to the right.

We fitted the chain graph to the data using the model selection procedure suggested by
Cox & Wermuth (1996). The Wald-test criterion was used in the backward selection and only
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(1)

NPKGS

MEET
(1 = Yes)

LISTS
(1 = Yes)

←

(2)

UNIV
POWER
SELF

EEM
EMIM
EIM

TC
KC
SC

←

(3)

JOB
(1 = academics)

O.STAT
(1 = full)

EDUC
(1 = statistics)

DEG
(1 = postdoc)

←

(4)

GEND

Table 1: Initial ordering of the response (block 1), intermediate (blocks 2 and 3) and purely explanatory
(block 4) variables as dependence chain.

strong effects (p < 0.01) are included in the respective models. The procedure was performed
for every response variable. The effects of the resulting univariate generalized linear regression
models on the response variables are represented as edges in the final model graph (see Fig. 1).
For sake of model simplicity block regression was used where associations within the groups of
pure responses, as well as pure explanatories have been omitted (cf. Wermuth, 1998).

Figure 1: Model graph of the final graphical chain model. Binary variables are depicted as circles and
numerical variables as dots (NPKGS is a discrete poisson distributed variable). Arrows indicate significant
relationships, the effect estimates are displayed above (plus standard errors in brackets).
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4 Discussion and Summary

In the present application of the proposed method based on directed acyclic graphs, the final
graphical model depicts main drivers of contributing to the R project. The effects from the
second on the first block of variables can be directly interpreted. The effects of nominal variables
in the third block can be interpreted as a difference in means, whereas negative values indicate
higher means for the one-encoded group. The effects of EMIM on all three response variables
imply that hybrid forms of motivation (well internalized extrinsic / intrinsic motivation) is a main
driver of voluntary contributing to OSS projects. Also SELF shows a positive effect on NPKGS.
Thus, the more self directed software developers are, the more packages they tend to release.
The significant effect of DEG on EEM provides evidence that prae-doc’s are more likely to be
external regulated and post-doc’s to be more introjected. The direct effect of JOB on NPKGS
indicates that academics are more likely to contribute than others (Henkel, 2006). Additionally,
the effect of EDUC on LISTS shows that statisticians subscribe to more mailing lists. The
effects of O.STAT on NPKGS and MEET indicate that contributors who work part time may
develop more packages and attend more meetings. This supports the finding from literature that
contributors to OSS are typically hobbyists who contribute in their free time (Shah, 2006). In
summary, the final graphical model captures many results which are consistent with previous
findings reported in the relevant literature.
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