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Example: Heterogeneity in Household Consumption Patterns

U.S. Consumer Expenditure Survey (2015)
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Example: Heterogeneity in Household Consumption Patterns

U.S. Consumer Expenditure Survey (2015)
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Example: Heterogeneity in Household Consumption Patterns

U.S. Consumer Expenditure Survey (2015)

Mean regression
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Example: Heterogeneity in Household Consumption Patterns

U.S. Consumer Expenditure Survey (2015)

Quantile regression
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Example: Heterogeneity in Household Consumption Patterns

U.S. Consumer Expenditure Survey (2015)
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Provides a comprehensive picture of
the conditional response distribution!
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Regression quantiles
R Koenker, G Bassett Jr - Econometrica: journal of the Econometric Society, 1978

Cited by 17331) Related articles All 15 versions

“.. applications are found throughout the sciences: chemistry, ecology,
economics, finance, genomics, medicine, and meteorology.” (Hand-
book of Quantile Regression, 2017).
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Regression quantiles
R Koenker, G Bassett Jr - Econometrica: journal of the Econometric Society, 1978

Cited by 17331) Related articles All 15 versions

“.. applications are found throughout the sciences: chemistry, ecology,
economics, finance, genomics, medicine, and meteorology.” (Hand-
book of Quantile Regression, 2017).

Marketing applications are not part of this selection!
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Contributions in Economics

Study of heterogeneity in treatment participation
(e.g., Abadie, Angrist & Imbens, 2002; Athey & Imbens 2006; Firpo, 2007;
Chernozhukov & Hansen, 2013)

Value-at-risk (tail value) measurement
(Chernozukov & Umantsev, 2001; Engle & Manganelli, 2004)

Exploration of multiple-output and functional responses

(Hallin, Paindaveine & Siman, 2010; Wei 2008; Carlier, Chernozhukov &
Galichon, 2016, Hallin & Siman, 2016; this talk!)
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Potential Contributions in Marketing

Study of heterogeneity in treatment participation

» Ad exposure effects (e.g., conversions or other rare events)

Value-at-risk (tail value) measurement

» Customer risk quantification

Exploration of multiple-output and functional responses

» Product category shift and substituation effects (e.g., share of wallet)
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Regression Quantiles in a Nutshell

(Conditional) mean regression
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= solved with numerical linear
algebra (i.e., OLS).
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Regression Quantiles in a Nutshell

(Conditional) quantile regression

N
argmin Z Palyn — qla|z,)|
:u(oz)vﬁ(a) n=1
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for 0 < a < 1, and asymmetric weight
(“check”) function:
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Regression Quantiles in a Nutshell

(Conditional) quantile regression

Pa(Un) = tn(ad (>0 — (1—a) L(u, <0))
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Regression Quantiles in a Nutshell

Multiple-outputs: y,, = (Yn1, - - Ynk)'s Tn = (Tn1, -+, Tng)’

Q(a|wn) = K@) + B(a)mn
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Multivariate Quantiles

Attempt 1: Conditioning

q(a@) = [qy,, (Y1), 5 Qi (@Y )]

» Input-space augmentation, assumes all
“regressors” are fixed!
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Multivariate Quantiles

. . Areas within the gray lines (contours) give
Attempt 2: Directional the 80%-directional quantile (20 directions).

» Convex intersection of a-quantile
halfspaces for different (Koenker-Bassett)
regression hyperplanes
(Hallin, Paindaveine & Siman, 2010).
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Multivariate Quantiles

Areas within the black lines (countours) give

Attempt 2: Directional the 80%-elliptical quantile.
3 -
» Convex intersection of a-quantile 2
halfspaces for different (Koenker-Bassett) ..
regression hyperplanes -1
(Hallin, Paindaveine & Siman, 2010). -2

Attempt 3: Direct

» Find an ellipsoid around a (determined)
center with a-probability mass (Hallin &
Siman, 2016).
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Multivariate Quantiles

» The (directional) quantile contours are
not guaranteed to cover a.

» The quantile regions can cover large
parts with little to no probability mass.

» The definitions cannot easily be extended
(i.e., to more than two outputs/ inputs).
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Multivariate Quantiles

(Super)level-set

L(fit) = {y, e R : f(y,) >t}

for threshold ¢ > 0, gives the highest density
region for f(-) (see, e.g., Hartigan, 1987).

18/35



Multivariate Quantiles

Areas within the lines (quantile contours)
correspond to 80% probability mass.

(Super)level-set o
K T

L(fit) = {y, e R : f(y,) >t} < or

for threshold ¢ > 0, gives the highest density :; I

region for f(-) (see, e.g., Hartigan, 1987).

(Super)level-set quantile

q(a) = L(f;17),
tr, =sup{Pr(y, € L(f;t)) > o}
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Multivariate Quantiles

Areas within the lines (quantile contours)
correspond to 80% probability mass.

» Supports a clear probabilistic 2 |
interpretation (in terms of «). ool
= oof

» (Flexible) quantile regions cover areas
with high probability mass. 3}

» Extensions to more than two inputs/
outputs are straightforward.
(see this paper!)
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Let's go (fully) Bayesian

(Overfitted) Finite Gaussian Mixture Model:

(yal,) =

where gm(wn = Hp + Bmwrw

M:

II{m (gm ), Em),

3

Ko} ~D(pr, - .pur).
Pm ~ g(@b 1/(@2M)>-

with M comparatively large (Nobile & Fearnside, 2007; Rousseau & Mengersen,
2011) and a on ¢(g,,(x,),2,,) (Malsiner-Walli, Frihwirth-Schnatter
& Griin, 2016).
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Implementation

Klc

208 (yC7w> - gm,lC( ) + ZImICCZ)mCC(yC gm,C<w))7

Klc _ 1
Em - Em,ICJC - Em,IC,CEm,C,CEm,C,IC ’

ﬁm¢<gm,c(w)a 2m,c,c>
2%1 ”l?b(Ql,c(m)a El,ac) ’

Wgz(ya ZIZ) =

. serve as inputs to the to compute g(«).
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HPD vs. Level-set Quantiles

Highest posterior density-set

» Operationalizes uncertainty of a model parameter (for a univariate posterior
distribution).

(Super)level-set

» Quantifies uncertainty in a (set of) response variable(s), conditional on
other response variables. (practically, invariance is not required).
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Heterogeneity in Household Consumption Patterns (cont.)

real expenditures on housing
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Hyperparameters
» M =5
» a, = 10, ay = 40 (Dirichlet prior)
» b =.5, by =.5 (Gamma prior)
MCMC samples

» Effective: 200,000 / 40
(Burn-in: 400,000)
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Heterogeneity in Household Consumption Patterns (cont.)

Bivariate quantiles for food and housing conditional on four
different income levels. Blue lines corr. to a € {.2, 4, .6, .8}.
Red lines corr. to an income increase of $6,000.
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» .2 expenditure quantile does
not react considerably.

» .8 expenditure (.2 income)

quantile substantially
increases spending.

» No clear substituation

patterns between food and
housing.
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Heterogeneity in Household Consumption Patterns (cont.)

Quantile-varying marginal effects conditional on income.
Shaded areas give the 90% C.I. for four income a-levels.
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Low-income quantile
households dedicate most of
the additional income to
food and shelter.

Highest-income quantile
households hardly increase
spendings at all.
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Conclusion

(Super)level-sets provide a coherent framework for multivariate and univariate
conditional as well as marginal quantiles:

» (1) no quantile crossing, (2) flexible quantile contours with exact
probability coverage, (3) easy to extend quantile concept.

» The overfitted GMM enables a data driven bandwith parameter selection.

No particular residual distribution assumption (see also Taddy & Kottas, 2011;
Reich, Bondell & Wang, 2011).

» Note: the AL-likelihood is not the true data generating process!
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Working paper available via
https://ideas.repec.org/p/tin/wpaper/20220094.html

Many thanks for your attention!
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Asymmetric Laplace Distribution

Probability Function
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Prior Distributions

Hm'f)Ov ‘70 ~ N('EO’ ‘70)7
Vo ~ N(’U V)
v = median(y,,),V ' =
‘70 = dlag(R%Ah s aR%(')\K)7
A~ g(bla 1/bz)~

with response variable-specific value ranges { Ry} and local shrinkage factors {\;} (b;,by > 0).
(see, Brown & Griffin, 2010)
vec(Bm) ~ ./\/(C()7 Co)

Em NIW(SO,SO)
where So =TI and s > 2+ K.
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Sampling Algorithm

» Simulate mixture parameters conditional on z,, (n=1,..., N, m=1,..., M):

v

Sample {£,,} from D(p1, ..., par) where pr = pm + Ny Ny = #{n : 2z, = m}.
» Sample {u,,} from N (D,,, V).

» Sample {B,,} from N (¢, Cp).

» Sample {X,,} from ZW(S,,, Sm)-

» Sample z, to classify observations conditional on mixture parameters (n =1,...,N):

> Tr'”'L = PI'[Zn = m‘yma ’q') H? B7 2] X H'”'Lgé(yn; g7n(xn)a E'H'L)'
» Sample {z,} from M(my,..., 7).

» Sample hyperparameters:

» Sample {p,,} simulatneously via a random walk MH-step with proposal density
log(pm) ~ N(log(pm), 5?;,,,) from p(pm|k) < p(K|Pm)p(Pm)
» Sample {\;} from GZG(by — M/2,2b,, 1) where 6, = Z%:l(ﬂ’m,k —o.x)?/R3.

> Sample Vg from N(Z%:l Mk/Ma VO/M) with ‘70 = dlag(R%)\la EERE) R%(AK)
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Level-Set Algorithm

Input : chosen coverage probability o
conditional distribution function Fy|y,—y,(¥)
grid boundary probability e
dimension-specific grid point number 7gq
Output: actual coverage probability p
numerical quantile Q = Qy |y ¢y, (c) of size n
1 for k € K do
2 grid, = equally spaced ngiq vector with values

—1 —1 .
from Fy jy,_,.(€) to Fyy, _, (1—¢);

K|
grid

3 | Qyyve—y.(@) = |K|-dimensional array of zeros

4 P = empty |K|-dimensional array to hold probabilities per hypercube
5 for (i1 € 2 : Ngra), (i2 € 2 2 Ngrig), - .-, (i) € 2 : Ngra) do
6 L P i) = Pr[Y;, € [gridy;, 1, gride,, | VE € K|Y ¢ = y(]
7p=0

8 while p < o do

9 | Z = set of indices for which P equals max{P}
10 | p=p+Y P
11 for i € Z do

12 Qi=a

13 L P,=0
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Quantile-Specific Measures

The local marginal effect in the a-level quantile of Y}, given Y = y,. for a
change from x to ¢ + A is:

5£|C<a|yc7 w) = QYk\Yc:yc (Oé|:B + Ag) - QYk|YC:yC (Oélw),

where A, is a vector with a small value §, at position g and zeros elsewhere (see
Doksum, 1974).
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