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The Role of SEM in Marketing Research (1) WU

Structural Equation Modeling (SEM) is a very popular tool for theory
testing in marketing and behavioral sciences (Steenkamp & Baumgartner,
2000; Baumgartner & Homburg, 1996; Hulland et al., 1996)

» SEM manage the inclusion of multiple endogenous / exogenous
constructs

» SEM account for measurement error in the latent constructs

» Sound theoretical assumptions are confronted with their "fit" with
directly observable data (both structural and measurement model)

» Two SEM-philosophies: Covariance-based SEM vs. Variance-based
partial least squares SEM (cf. Hair et al., 2012)
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The Role of SEM in Marketing Research (2)

WU

» Underlying theoretical justification of SEM models are not always so
sound (sometimes they are very weak)

» SEM practice often degenerates to an "exploratory device" for
identifying "best" model fitting empirical data (in particular when it
comes to "adjust" the measurement models)

» Formal assumptions:

Cov.-based SEM

Var.-based SEM (PLS)

Assumptions

Estimation
Models
Meas. Mod.
Error Corr.
R-packages

multivariate Norm.

ML (or GLS/WLS)
multivariate

factor scores
Bootstrap

lavaan, sem, ...

no distributional assumptions
(appl. for nom., ord. & cont.)

Componentwise

uni- & multivariate
factor scores
Bootstrap

semPLS, pls, plspm, ...
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Graphical Markov models (1)

The approach based on graphical Markov models (in particular DAG)
imposes less rigorous assumptions.
» ... are multivariate statistical models, where a graph G (G = (V,E))
describes independence statements in the joint distribution
» V: r.v. are denoted by nodes (discrete or continuous)

» E: cond. association parameters in the distribution are represented by
edges

A Markovian model is equivalent to a recursive model in SEM. J

Z—=Y+ X

cond. independence rel. X LZ|Y
fx,y,2) = f(x) FyIx)f(zly)
—_——

linear regressions
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Graphical Markov models (2)

> An initial sequence of the r.v. is defined by (e.g.) research hypotheses
(dependence chain or joint response chain graph

G={V(1),...,V(p)} i.e., an ordered disjoint partitioning of V)

V() v(2) v(3) v(4)

I

> All variables are assigned to a higher order component of G are
considered conditionally on the prior components
» The density factorizes to

fv=" v, 1.vi v, i Vovi o vy - fyy
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Graphical Markov models (3)

» If the variables can be ordered in a recursive response structure we
call the graph a directed acyclic graph Gg,; (variables are neither
explanatory nor responses for itself).

» The density f admits a recursive factorization according to G (y is a

random vector)
f(y) = H f(yP’yPr(p))
peVvV

> Models of this type can be constructed via a set of univariate cond.
models.
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The ECSI (European Customer Satisfaction Index) Study (1)

Ex.: Structural model describing causes and consequences of customer
satisfaction.

(cf. Tenenhaus et al., 2005)
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The ECSI (European Customer Satisfaction Index) Study (2) WU

dependence chain

> First block: all
(2) variables in the
second block
are regressed as
(1) independent
ones on

— satisfaction
- f - E .
Satisfaction xpect » Second block:

all variables are
alternatingly
considered as
dependent and
independent

Value

Quality
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The European Customer Satisfaction Index (3)

> SEM & PLS: same results (cf. Tenenhaus
et al., 2005)

> DAG: same results
f(s,e,v,q) =
f(slv, q)f(vla)f(ela)f(qlv,e)

> Automatic model selection only in DAG

(Coefficients for Expectation are very
small, p > 0.05)

DAG advantages:

> Equation parameters are regression coefficients (interpretation of structure in
terms of independencies).

No overparametrization and consequently no problems of identification.

> General results are available to read directly off the graph of the model.
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The CRAN Motivation Survey

» Conducted in April/May 2010 to study software developers'
motivation to contribute to the OSS project the R-project for
statistical computing.

> 4,274 authors of R packages were contacted via Email
(CRAN, R-Forge, Bioconductor).

» 782 contributors completed the questionnaire consisted of 120 items
(incl. different forms of individual participation and potential
motivational drivers).
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Dependence chain: Initial ordering of the response (1), intermediate

(2 and 3) and purely explanatory (4) variables

(1) (2) 3) (4)
UNIV JOB
POWER (1 = academics)
NPKGS SELF
O.STAT
MEET EEM (1 = full)
(1=Yes) | < | Emim = EDUC | GEND
LISTS EIM (1 = statistics)
(1 = Yes) TC DG
KC (1 = postdoc)
SC
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Model graph of the final graphical chain model. Binary variables are
depicted as circles and numerical variables as dots (NPKGS is a
discrete poisson distributed variable). Arrows indicate significant

relationships.
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Summary & Discussion

» The presented kind of Markovian models is particularly interesting for
social and behavioral sciences (observational studies, complex
multivariate dependencies, existing substantive knowledge)

» Combination of graphical Markov model technique, model building
and methods for scaling provide a useful alternative to SEM.

» Only an ordinal structure behind the model has to be specified (no
theoretical restrictions on the form of the conditional distributions)

» Variable of mixed measurement scale types can be modeled both
within and between levels.
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Appendix - Model Selection (1)

» By the model selection algorithm of Cox & Wermuth (1996)
(heuristic based on backward and forward selection)
> At each step a variable is regressed on all variables belonging to a

chain component with a lower number (univariate conditional
regression)

» Performed for every (potential) response variable to break up complex
structures into tractable subcomponents

Non-recursive linear models in SEM are equivalent to block recursive
regression models (Lauritzen & Wermuth, 1990)
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Appendix - Model Selection (2)

Screening for interactions and nonlinear relations by forward selection (full model)

0

Regression based on main effects (+ nonlinear terms and/or interaction)
using backward selection strategy leads to a reduced model

0

Check for interactions and nonlinear relations based on the reduced model, again backward
selection leads to a even more reduced model

I

Check for interactions and nonlinear terms, again backward selection leads to the finally seIectedJ
model
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Appendix - The CRAN Motivation Survey
Measurement Model

» Latent variables are estimated by the use of item response theory

» Each subject is mapped on a latent dimension by estimating a person
parameter (corresponds to factor scores from FA).

» Different methods are possible (for an overview see de Ayala, 2008)

> additionally: variables are corrected for additive measurement error by

Stefanski, 1994)

the use of simulation extrapolation method (SIMEX, Cook &
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